Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 163-167, 2012.
Article in Chinese | WPRIM | ID: wpr-273534

ABSTRACT

<p><b>OBJECTIVE</b>To study the effects of electromagnetic pulse (EMP) exposure on the morphological change and excretion functions of mouse microglia (BV-2) cells and possible mechanism.</p><p><b>METHODS</b>BV-2 cells were divided into two groups: the group exposed to EMP at 200 kV/m for 200 pulses and sham exposure group. At 1, 6, 12 and 24 hour after exposure the cells and culture supernatant were collected. Cellular morphological change was observed under invert microscope, the levels of TNF-α, IL-1β and IL-10 in culture supernatant were determined by enzyme-linked immunosorbent assay (ELISA), nitric oxide (NO) and reactive oxygen species (ROS) were detected by nitrate reductase method and DCFH-DA probe, respectively. The protein and phosphorylation levels of ERK, JNK and p38 were measured by Western Blot method. After the cells pre-treated with the inhibitor of p38 (SB203580) were exposed to EMP, the levels of NO and ROS in culture supernatant were detected.</p><p><b>RESULTS</b>It was found that the large ameboid shape appeared in some microglia cells exposed to EMP for 1, 6 and 12 h. Moreover, the number of microglia cells with ameboid shape increased significantly at 1 h, 6 h and 12 h after EMP exposure compared with sham group (P < 0.05). The levels of cytokines, such as TNF-α, IL-1β and IL-10, in culture supernatant did not change obviously after EMP exposure. The levels of NO and ROS increased significantly at 1h after EMP exposure, reached the peak at 6 h, began to recover at 12 h and recovered to sham group level at 24 h (P < 0.05). Western blot results showed that the protein and protein phosphorylation levels of ERK and JNK did not change significantly after EMP exposure, however, the protein and protein phosphorylation levels of p38 increased obviously at 1 h and 6 h after EMP exposure, compared with sham group (P < 0.05). In addition, the pretreatment of p38 inhibitor (SB203580) significantly decreased NO and ROS production induced by EMP.</p><p><b>CONCLUSION</b>EMP exposure may activate microglia cells and promote the production of NO and ROS in mouse microglia cells, and p38 pathway is involved in this process.</p>


Subject(s)
Animals , Mice , Cell Line , Cytokines , Bodily Secretions , Electromagnetic Fields , Microglia , Cell Biology , Metabolism , Bodily Secretions , Nitric Oxide , Metabolism , Reactive Oxygen Species , Metabolism , p38 Mitogen-Activated Protein Kinases , Metabolism
2.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 181-185, 2012.
Article in Chinese | WPRIM | ID: wpr-273530

ABSTRACT

<p><b>OBJECTIVE</b>To establish the inner blood-retinal barrier (BRB) model in vitro by co-culturing RF/6A cells and C6 cells and to investigate the effects of EMP (200 kV/m, 200 pulses) exposure on the permeability of the inner BRB model in vitro.</p><p><b>METHODS</b>RF/6A cells and C6 cells were co-cultured on transwell, and the characteristic of the inner BRB model was assessed by detecting transendothelial electrical resistance (TEER) and the permeability of horseradish peroxidase (HRP). The co-cultured model was exposed or sham exposed to the EMP (200 kV/m 200 pulses) for 0.5, 3, 6, 12, 24 h in vitro, then TEER and the permeability of HRP were measured for studying the effects of EMP on the permeability of inner BRB model in vitro.</p><p><b>RESULTS</b>TEER value (145 Ωcm(2)) of the co-culturing inner BRB model significantly increased, as compared to that of RF/6A cells alone model (P < 0.05) on the 6th day after inoculation. There was significant difference of permeability of HRP between the co-culturing inner BRB model and RF/6A cells alone model (P < 0.05). The ability of inhibiting large molecular materials in the co-culturing inner BRB model enhanced. The TEER value decreased and the permeability of HRP increased as compared to the sham group at 0.5, 3, 6 h after the exposure.</p><p><b>CONCLUSION</b>The inner BRB model by co-culturing RF/6A cells and C6 cells in vitro is efficient and suitable to study the alterations of the restricted permeability function of the inner BRB. EMP (200 kV/m for 200 pulses) could induce the enhanced permeability of the inner BRB model in vitro.</p>


Subject(s)
Animals , Rats , Blood-Retinal Barrier , Physiology , Cell Line, Tumor , Coculture Techniques , Electric Impedance , Electromagnetic Fields , Endothelial Cells , Physiology , Macaca mulatta , Permeability , Retina , Cell Biology
3.
Acta Pharmaceutica Sinica ; (12): 1063-1069, 2012.
Article in Chinese | WPRIM | ID: wpr-276199

ABSTRACT

The achenes morphological and micro-morphological characteristics of six species of genus Taraxacum from northeastern China as well as SRAP cluster analysis were observed for their classification evidences. The achenes were observed by microscope and EPMA. Cluster analysis was given on the basis of the size, shape, cone proportion, color and surface sculpture of achenes. The Taraxacum inter-species achene shape characteristic difference is obvious, particularly spinulose distribution and size, achene color and achene size; with the Taraxacum plant achene shape the cluster method T. antungense Kitag. and the T. urbanum Kitag. should combine for the identical kind; the achene morphology cluster analysis and the SRAP tagged molecule systematics's cluster result retrieves in the table with "the Chinese flora". The class group to divide the result is consistent. Taraxacum plant achene shape characteristic stable conservative, may carry on the inter-species division and the sibship analysis according to the achene shape characteristic combination difference; the achene morphology cluster analysis as well as the SRAP tagged molecule systematics confirmation support dandelion classification result of "the Chinese flora".


Subject(s)
Base Sequence , China , Cluster Analysis , DNA, Plant , Genetics , Fruit , Genetic Markers , Genetics , Genetic Variation , Genotype , Phylogeny , Plants, Medicinal , Genetics , Polymorphism, Genetic , Species Specificity , Taraxacum , Classification , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL